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Abstract- Various generalized sub gradients are developed in non-smooth analysis to describe the regularity of 
convex functions. Optimality conditions of the problems are discussed using continuity of sub differentials. The 
global solutions to the problems having local solutions are provided using non-smooth necessary conditions. 
Application of the non-smooth theory in this paper is to combine distinct versions of necessary optimal 
conditions in constraints optimization. 
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1. INTRODUCTION 

The sub differential ( )f   of a convex 

function f  shows important and necessary 

properties of the derivative in optimization. 

When a point is (local) minimizer it follow the 

necessary optimality condition 0 ( )f x and 

reduces to  ( )f x  if f  is differentiable at x. 

This frequently satisfies certain calculus rules

( )( ) ( ) ( )f g x f x g x      . For various 

reasons, the sub differential ( )f   is not mainly 

useful if the function f is not convex. This 

forced to search other definitions of the sub 

differential for a concave function. In present 

study we try to outline few of such sub 

differentials like Dini directional derivative.  

Like Karush Kuhn-Tucker conditions, Fritz 

John conditions and Mangasarian-Fromovitz 

conditions are also equivalent. A Michel-Penot 

sub differential is generally smaller and provides 

stronger necessary conditions, therefore, 

preferred over Clarke sub differential. In 

contradiction to our assumption, local 

Lipschitzness are not assumed around the optimal 

point x . The aim of the non smooth theory in the 

present study is to combine two different versions 

of the necessary optimality conditions are 

considered in constrained optimization. The first 

concluding in the Karush-Kuhn-Tucker 

conditions depending on Gateaux 

differentiability, while the second used the 

Lagrangian necessary conditions in convexity. A 

main character of the Michel-Penot sub 

differential is to coincides with the Gateaux 

derivative whenever exists. The generalizations  

 

 

of the convex sub differential indicates that a 

convex function is locally Lipschitz and also 

regular around any point in the interior of its 

domain. The Clarke sub differential has a 

extraordinary alternate explanation frequently 

more convenient for calculation. Rademacher's 

theorem states that locally Lipschitz functions are 

almost everywhere differentiable. It is a logically 

simple measure-theoretic outcome. 

2. PRELIMINARIES AND DEFINITIONS 

For a convex function  : ,f E     with x 

in dom f , we can characterize the sub 

differential via the directional derivative: 

( )f x  if and only if , ( ; )f x    . A 

natural approach is therefore to generalize the 

directional derivative. Henceforth in this paper 

we make the simplifying assumption that the real 

function f  (a real-valued function defined on 

some subset of E) is locally Lipschitz around the 

point x in E and partly motivated by the 

development of optimality conditions, a simple 

first type is the Dini directional derivative: 

                                     

0

( ) ( )
( ; ) liminf

t

f x th f x
f x h

t





 
  

A disadvantage of this idea is that ( ; )f x   is not 

usually sub linear (consider for example f     

on R), so we could not expect an analogue of the 

Max formula. With this in mind, we introduce the 

Clarke directional derivative, 
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>0 y-x ,0<t<

, 0

( ) ( )
( ; )

( ) ( )
inf sup

liminf
y x t

f y th f y
f x h

t

f y th f y

t  

 

 


 


, 

and the Michel-Penot directional derivative, 

        

, 0

( ) ( )
( ; ) sup lim sup

u E t

f y th f y
f x h

t



 

 
  

 

Proposition 2.1 If the real function f  has 

Lipschitz constant K around the point x in E then 

the Clarke and Michel-Penot directional 

derivatives ( ; )f x   and ( ; )f x   are sub linear, 

and satisfy 

                  ( ; ) ( ; ) ( ; )f x f x f x K         

Proof. The positive homogeneity and upper 

bound are straightforward, so let us prove 

subadditivity in the Clarke case. For any 

sequences 
rx x  in E and 0t   in R, and any 

real >0 , we have 

                     

( ( )) ( ))
( ; )

r r

r r

r

f x t u v f x t u
f x v

t


   
 

,   and 

                    

( ) ( )
( ; )

r r

r

r

f x t u f x
f x u

t


 
  , 

for all large r. Adding and letting r approach 1 

shows 

                                      

( ; ) ( ; ) ( ; ) 2f x u v f x u f x v     , and the 

result follows. We leave the Michel-Penot case as 

an exercise. The inequalities are straightforward.  

Using our knowledge of support functions, we 

can now define the Clarke subdifferential 

                         

 ( ) , ( ; ),f x E h f x h for all h H     

, 

and the Dini and Michel-Penot sub differentials 

( )f x and ( )f x analogously. 

Elements of the respective sub differentials are 

called sub gradients. 

 

Corollary 2.2 (Nonsmooth max formulae) If 

the real function f  has Lipschitz constant K 

around the point x in E then the Clarke and 

Michel-Penot sub differentials ( )f x  and 

( )f x are nonempty, compact and convex, and 

satisfy 

                              

( ) ( ) ( )f x f x f x KB        

Furthermore, the Clarke and Michel-Penot 

directional derivatives are the support functions 

of the corresponding sub differentials: 

(2.3)            

 ( ; ) max , ( )f x h h f x   , and 

(2.4)             

 ( ; ) max , ( )f x h h f x 

   

for any direction h in E. 

Notice the Dini subdifferential is also compact 

and convex, but may be empty. 

Clearly if the point x is a local minimizer of f  

then any direction h in E satisfies ( ; ) 0f x h  , 

and hence the necessary optimality conditions 

 0 ( ) ( ) ( )f x f x f x       hold.  

If g is another real function which is locally 

Lipschitz around x then we would not typically 

expect ( )( ) ( ) ( )f g x f x g x       

 (Consider f g    on R at x = 0 for 

example).  

On the other hand, if we are interested in an 

optimality condition like 0 ( )( )f g x  , it is 

the inclusion ( )( ) ( ) ( )f g x f x g x       

which really matters. We address this in the next 

result, along with an analogue of the formula for 

the convex sub differential of a max-function. We 

write f g  for the function  

 max ( ) ( )x f x g x . 

 

Theorem 2.5 (Nonsmooth calculus) If the real 

functions f and g are locally Lipschitz around the 

point x in E, then the Clarke sub differential 

satisfies 

(2.6) ( )( ) ( ) ( )f g x f x g x      , and 

(2.7) ( )( ) ( ( ) ( ))f g x conv f x g x      . 

Analogous results hold for the Michel-Penot sub 

differential. 

Proof. The Clarke directional derivative satisfies 

  ( ) ( ; ) ( ; ) ( ; )f g x f x g x      , 
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Since limsup is a sub linear function. Using the 

Max formula (1.1.3) we deduce 

            
0 ( )( ) ( ) ( )f g x f x g x

  

   
 , 

and taking conjugates now gives the result using 

the Fenchel biconjugacy theorem and the fact that 

both sides of inclusion (2.6) are compact and 

convex. 

To see inclusion (2.7), fix a direction h in E and 

choose sequences 
r xx   in E and 0t   in R 

satisfying 

                 

( )( ) ( )( )

( ) ( ; )

r r

r

r

f g x t h f g x

t

f g x h

   

 

 

Without loss of generality, suppose 

( )( ) ( )r r

r rf g x t h f x t h     for all r in 

some subsequence R of N, and now note 

              

,

,

( ) ( )
( ; ) limsup

( )( ) ( )( )
limsup

( ) ( ; )

r r

r

r

r r

r

r

r r R

r r R

f x t h f x
f x h

t

f g x t h f g x

t

f g x h

 

 

 


   


 

 

We deduce ( ) ( ; ) ( ; ) ( ; )f g x f x g x      , 

which, using the Max formula (1.1.3), we can 

rewrite as 

                  
0( )( ) ( ) ( )

( ( ) ( ))

f g x f x g x

conv f x g x

  



  



   

 






 

using Support functions. Now the Fenchel 

biconjugacy theorem again completes the proof.  

 

Theorem 2.8 (Nonsmooth necessary condition) 

Suppose the point x is a local minimizer for the 

problem 

(2.9)            inf ( ) ( ) 0( )if x g x i I   

where the real functions f  and ig  (for i in finite 

index set I) are locally Lipschitz around x . Let 

 ( ) ( ) 0iI x i g x   be the active set. Then 

there exist real 0 0i   , for i in ( )I x , not all 

zero, satisfying 

(2.10)    0

( )

0 ( ) ( )i i

i I x

f x g x 


      

If furthermore some direction d in E satisfies 

(2.11)       ( ; )< 0ig x d    for all i in ( )I x  

then we can assume 0 1  . 

Proof. Imitating the approach of section-2.3, we 

note that x  is a local minimizer of the function 

                

 x max (x)- ( ), ( ) ( ( ))if f x g x i I x . 

We deduce 

                

 

( )

0 (max - ( ), ( ( )) )( )

( ) ( )

i

i

i I x

f f x g i I x x

conv f x g x


 

 
   

 

 

by inclusion (2.7). 

If condition (2.11) holds and 0  is 0 in condition 

(1.1.10), we obtain the contradiction 

                    

( )

( )

0 max , ( )

( ; ) < 0

i i

i I x

i i

i I x

d g x

g x d

  







 
   

 






. 

Thus 0  is strictly positive, and hence without 

loss of generality equals to 1. Assumption (2.11) 

is a Mangasarian-Fromovitz type condition and 

the conclusion is a Karush-Kuhn-Tucker 

condition. Michel-Penot sub differentials are 

preferred over Clarke sub differential because 

generally it is smaller and hence provides 

stronger necessary conditions. In contradiction to 

our assumption, local Lipschitzness are not 

assumed around the optimal point x . 

 

3. GENERALIZED DERIVATIVES AND 

NON SMOOTH OPTIMIZATION 

Proposition 3.1 (Unique Michel-Penot sub 

gradient) A real function f which is locally 

Lipschitz around the point x in E has a unique 

Michel- Penot sub gradient   at x if and only if 

  is the Gateaux derivative ( )f x . 

Proof. If f has a unique Michel-Penot sub 

gradient  at x, then all directions h in E satisfy 
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0

( ) ( )
( ; ) sup limsup

,

u E t

f x th tu f x tu
f x h

t

h

 

   




. 

The cases h w  with 0u   , and h w   with 

u w  show 

     
0

0

( ) ( )
limsup

( ) ( )
, liminf

t

t

f x tw f x

t

f x tw f x
w

t






 

 
 

 

so we deduce ( , ) ,f x w w   as required. 

Conversely, if f  has Gateaux derivative   at x 

then any directions h and u in E satisfy 

              

0

0

0

( ) ( )
limsup

( ( )) ( )
limsup

( ) ( )
liminf

( ; ) ( ; ) , ,

, ( ; ) ( ; ).

t

t

t

f x th tu f x tu

t

f x t h u f x

t

f x tu f x

t

f x h u f x u h u u

h f x h f x h

 









   

  


 


      

  

 

Now taking the supremum over u shows 

( ; ) ,f x h h  for all h, as we claimed.  

Thus for example the Fritz John condition (2.10) 

reduces to Fritz John Theorem of weaker 

conditions in the differentiable case (under the 

extra assumption of local Lipschitzness). The 

above result shows that when f is Gateaux 

differentiable at the point x, the Dini and Michel-

Penot directional derivatives coincide. If they 

also equal to the Clarke directional derivative 

then we say f is regular at x. Thus a real function

f , locally Lipschitz around x, is regular at x 

exactly when the ordinary directional derivative 

( ; )f x   exists and equals to the Clarke 

directional derivative ( ; )f x  .  

One of the reasons we are interested in regularity 

is that when the two functions f and g are 

regular at x, the nonsmooth calculus rules (2.6) 

and (2.7) hold with equality (assuming f (x) = 

g(x) in the latter).  

The generalizations of the convex sub differential 

indicates that a convex function is locally 

Lipschitz and also regular around any point in the 

interior of its domain. 

 

Theorem 3.2 (Regularity of convex functions) 

Suppose the function  : ,f E     is 

convex. If the point x lies in int(dom f ) then f  

is regular at x, and hence the convex, Dini, 

Michel-Penot and Clarke subdifferentials all 

coincide: 

                             

( ) ( ) ( ) ( )f x f x f x f x        . 

Proof. Fix a direction h in E, and choose a real

>0 . Denoting the local Lipschitz constant by 

K, we know 

                        

0 0<t<

0

0

( ) ( )
( ; ) lim sup sup

( ) ( )
lim sup

( ) ( )
lim 2

( ; ) 2

y x

y x

f y th f y
f x h

t

f y h f y

f x h f x
K

f x h K

  

 














  

  



 


 


 
 

 

 

using the convexity of f . We deduce 

          

( ; ) ( ; ) ( ; ) ( ; ) ( ; )f x h f x h f x h f x h f x h    

 

and the result follows.  

Thus for example, the Karush-Kuhn-Tucker type 

condition that we obtained at the end reduces 

exactly to the Lagrangian necessary conditions, 

written in the form 

( )
0 ( ) ( )i ii I x

f x g x


   , assuming the 

convex functions f  and ig  (for indices i in

( )I x ) are continuous at the optimal solution x . 

By analogy with Proposition 3.1 (Unique Michel-

Penot subgradient), we might ask when the 

Clarke sub differential of a function f at a point 

x is a singleton  ? Clearly in this case f  must 

be regular, with Gateaux derivative ( )f x   , 

although Gateaux differentiability is not enough, 

as the example
2 1sin( )x

x
. To answer the 

question we need a stronger notion of  
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differentiability. 

For future reference we introduce three gradually 

stronger conditions for an arbitrary real function

f . We say an element   of E is the Frechet 

derivative of f  at x if it satisfies 

                                 

,

( ) ( ) ,
0lim

y x y x

f y f x y x

y x



 

  



, 

and we say   is the strict derivative of f  at x if 

it satisfies 

                                   

, ,

( ) ( ) ,
0lim

y z x y z

f y f z y z

y z



 

  



 

In either case, it is easy to see ( )f x is . For 

locally Lipschitz functions on E, a 

straightforward exercise shows Gateaux and 

Frechet differentiability coincide, but notice that 

the function 
2 1sin( )x

x
 is not strictly 

differentiable at 0. Finally, if f  is Gateaux 

differentiable close to x with gradient map ( )f   

continuous, then we say f  is continuously 

differentiable around x. In the case 
nE R  we 

see in elementary calculus that this is equivalent 

to the partial derivatives of f being continuous 

around x. We make analogous definitions of 

Gateaux, Frechet, strict and continuous 

differentiability for a function :F E Y  

(where Y is another Euclidean space). The 

derivative ( )f x  is in this case a linear map 

from E to Y. 

 

Theorem 3.3 (Strict differentiability) A real 

function f  has strict derivative   at a point x in 

E if and only if it is locally Lipschitz around x 

with 

                                             

, 0

( ) ( )
,lim

y x t

f y th f y
h

t


 

 
  

for all directions h in E. In particular this holds if 

f is continuously differentiable around x, with

( )f x   . 

 

Theorem 3.4 (Unique Clarke subgradient) A 

real function f  which is locally Lipschitz around 

the point x in E has a unique Clarke subgradient 

  at x if and only if   is the strict derivative of 

f at x. In this case f  is regular at x. 

Proof. One direction is clear, so let us assume

 ( )f x   . Then we deduce 

      

, 0

, 0

, 0

( ) ( )

(( ) ) ( )

( ; ) , ( ; )

( ) ( )
,

lim

limsup

limsup

y x t

y x t

y x t

f y th f y

t

f y th th f y th

t

f x h h f x h

f y th f y

t



 

 

 

 

   
 

    

 


 

and the result now follows, using Theorem 3.3 

(Strict differentiability).  

 

Theorem 3.5 (Intrinsic Clarke sub differential) 

suppose that the real function f  is locally 

Lipschitz around the point x in E and that the set 

S E  has measure zero. Then the Clarke sub 

differential of f at x is            

 ( ) ( ) ,lim r r r

r
f x conv f x x x x S     . 

4. Conclusion: 

 The Michel-Penot sub differential is 

analogous to Clarke sub differential. 

 Locally Lipschitz functions are almost 

everywhere differentiable. 

 The Clarke sub differential has a 

extraordinary alternate explanation 

frequently more convenient for 

calculation. 

 The generalizations of the convex sub 

differential indicates that a convex 

function is locally Lipschitz and also 

regular around any point in the interior of 

its domain. 
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